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We study the properties of the giant connected component in random graphs with arbitrary degree distribu-
tion. We concentrate on the degree-degree correlations. We show that the adjoining nodes in the giant con-
nected component are correlated and derive analytic formulas for the joint nearest-neighbor degree probability
distribution. Using those results we describe correlations in maximal entropy connected random graphs. We
show that connected graphs are disassortative and that correlations are strongly related to the presence of
one-degree nodes �leaves�. We propose an efficient algorithm for generating connected random graphs. We
illustrate our results with several examples.
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I. INTRODUCTION

In the last decade or so, there has been a great increase of
interest in the theory of random graphs and networks �in the
following we will use those two terms interchangeably�.
While in principle this is a branch of mathematics, much of
this effort was fueled by the availability of “experimental”
data on real graphs �see �1� for review�. These data are com-
pared to the predictions of various random graphs models.
Probably the best known and simplest example of such ref-
erence models is the ensemble of all labeled graphs with V
vertices and L links �without multiple- and self-links�, cho-
sen with uniform probability. We will call this model Erdös-
Rényi �ER� graphs after the authors, who were the first to
introduce and study them �2�.

The ER ensemble is the simplest example of the so-called
“maximally random” graphs. Intuitively those are the en-
sembles where the distributions of vertices and links joining
them are “as random as possible” for a given set of con-
straints. In the case of ER graphs the only constraints are the
fixed number of links and vertices. The “maximal random-
ness” can be formalized using the notion of entropy �see Sec.
II�. The maximally random ensembles serve as null hypoth-
esis. For example, it was the deviation of data collected on
the World Wide Web �WWW� graph from the predictions of
the ER model that triggered the interest in random networks
�3�, because it implied that those graphs were not created just
by joining vertices at random, but required the existence of
another mechanism �4�.

A popular generalization of the ER ensemble are graphs
with a given degree distribution �degree of a node is the
number of links attached to it� �5–10�. One feature of those
ensembles is the absence of correlations between neighbor-
ing nodes’ degrees, at least for degree distributions without
heavy tails �see the discussion in Sec. IV C�. The object of
our study was to find what happens when we constrain to
connected graphs only. A simple argument indicated that cor-

relations would appear: a neighbor of a node with degree one
�leaf� must have its degree greater than 1; otherwise, they
would form a separate connected component. Similarly, all
neighbors of a node cannot have their degree equal to 1, as
such a “hedgehog” would also form a separate connected
component �11,12�. This obviously leads to correlations. It is
not clear, however, how strong they are and if they survive
the large-V limit. We have already studied those correlations
numerically in Ref. �12� and found that they also appear in
large graphs. In this paper we derive the analytic formulas
describing them. We also found a strong indication that the
described mechanism is the only one responsible for the cor-
relation in maximally random connected graphs: when we
forbid vertices with degree 1 correlations disappear.

Connectivity is a nonlocal constraint hard to deal with. To
study the properties of connected graphs we use another fea-
ture of maximally random graphs with a given degree distri-
bution: the appearance of a connected component that in-
cludes a finite fraction of all the vertices �and links�. From
the properties of this giant connected component we can in-
fer the properties of connected graphs.

The paper is organized as follows: Section II introduces
some basic definitions concerning random graphs. In Sec. III
we present the method of generating functions used to study
the properties of the giant connected component in random
graphs with arbitrary degree distribution �6�. Then we calcu-
late degree-degree correlations in the giant component. Sec-
tion IV contains some examples where we compare our pre-
dictions with the results of Monte Carlo �MC� simulations.
Finally, we show in Sec. V how to relate connected random
graphs to giant connected components in other ensembles. In
Sec. VI we address the situation when correlations in random
graphs are suppressed by the absence of vertices with degree
one �leaves�. The paper is summarized in Sec. VII.

II. RANDOM GRAPHS

A. Average degree

Formally we consider random graphs as an ensemble of
graphs G with probability P�G� assigned to every graph
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G�G. Using this definition we introduce the entropy of the
ensemble:

S = − �
G�G

P�G�ln P�G� . �1�

The maximally random ensembles described in the previous
section are those which for given constraints have maximal
entropy.

Denoting by O�G� some property of graph G we can cal-
culate its average over the whole ensemble:

�O�G = �
G�G

O�G�P�G� . �2�

The most widely studied example is the probability distribu-
tion of node degrees:

pk = � nk�G�
V�G� 	G

, �3�

where nk�G� is the number of vertices with degree k and
V�G� is the total number of vertices in graph G �in the fol-
lowing we will often omit the argument G�. The mean of this
distribution is the “link density,”

�k� = �
k

kpk = � 2L�G�
V�G� 	G


 z , �4�

because �kknk=2L�G�; by L�G�, we denote the number of
links in graph G.

However, what is frequently observed is not an average
�2�, but the properties of a single graph �e.g., WWW�. That is
why we are actually interested in the probability that our
model will produce a graph with those properties. It is de-
scribed by the distribution

P�O� = �
G�G

�„O − O�G�…P�G� . �5�

In many cases this distribution is sufficiently well character-
ized by its mean �2� with relative fluctuations disappearing in
the large-V limit. In this situation we will say the O is self-
averaging. In such a case one can infer the properties of the
whole ensemble from the properties of just one large graph.
We want to emphasize, however, that this is only an assump-
tion that has to be checked for each particular model �see
�13� for a discussion of self-averaging in real graphs�.

In Appendix A we show for illustration a definition of a
non-self-averaging ensemble. Although this is an artificial
example, let it serve as a warning. In this paper we assume
that our models are self-averaging without any further formal
proofs.

We end with the following comment: As in the self-
averaging ensemble fluctuations do not matter, in the large-
volume limit we have

pk = � nk�G�
V�G� 	G

�
�nk�G��G

�V�G��G
. �6�

We will use this kind of approximations in the following
sections.

B. Correlations

The distribution pk does not give any information about
the correlations between vertices. An obvious generalization
is the joint distribution pq,r which describes the probability
that a pair of nearest neighbors �NNs� has degrees q and r
�we assume that we pick a pair of NNs with uniform prob-
ability�:

pq,r = � nq,r

2L
	 , �7�

where nq,r is the number of links with their start point having
degree q and end point having degree r. Note that we treat
each undirected link as two directed links. On an undirected
graph,

nq,r = nr,q, �
q,r

nq,r = 2L and �
r

nq,r = qnq. �8�

If vertex degrees are independent, the probability �7� should
factorize:

pq,r = p̃qp̃r, p̃q = �
r

pq,r, �9�

leading to the relation

� nq,r

2L
	 = qr� nq

2L
	� nr

2L
	 . �10�

One should, however, keep in mind that this defines the ab-
sence of correlations in the ensemble of graphs. A more ap-
propriate question could be, are the vertices on individual
graphs uncorrelated �see previous section�? The condition for
absence of correlations between vertices in each individual
graph G is

nq,r�G�
2L�G�

= qr
nq�G�
2L�G�

nr�G�
2L�G�

�11�

or, after averaging,

� nq,r

2L
	 = qr� nq

2L

nr

2L
	 . �12�

As already pointed out, for a large class of ensembles con-
ditions �10� and �12� are equivalent in the large-volume limit.
However, it is easy to check that for the non-self-averaging
ensemble in Appendix A vertices on each individual graph
are uncorrelated according to the condition �12�, but corre-
lated according to �10�. Again, we leave this as a warning
and proceed further with the assumption that our models are
self-averaging and that those two conditions are equivalent.

In practice, checking the condition �9� is difficult as it
entails measuring a two dimensional distribution with good
accuracy. Therefore we introduce another quantity �14�

k̄�k� = �
q
� qnk,q

knk
	 . �13�

It describes the average degree of nearest neighbors of a

vertex with degree k. Obviously k̄�k� is defined for a given k
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only if nk�0. k̄�k� can be interpreted as the first moment of
the conditional probability:

p��q�k� =
pq,k

p̃k

. �14�

Assuming self-averaging,

k̄�k�  �
q

qp��q�k� . �15�

If the degrees are independent, k̄�k� should not depend on k
and �12� implies

k̄�k� = �
q

q2� nq

2L
	 

�k2�
�k�

. �16�

When k̄�k� grows with k the graph is called assortative and
when it shrinks disassortative.

III. CONNECTED COMPONENTS

In general, maximally random graphs with a given degree
distribution do not need to be connected. However, if

�
k

k�k − 2�pk � 0 �17�

�which translates into z�1 in the case of ER graphs�, one of
the connected components �called the giant connected com-
ponent� will gather a finite fraction of all links and vertices
�6�. This is a phenomenon akin to percolation. In Ref. �6� the
size of the giant component and the size distribution of finite
components were calculated. The degree distribution in the
giant component pk

�g� was calculated in Ref. �8�. Here we
generalize those results and calculate the two-point distribu-

tions pq,r
�g� and k̄�g��k� for the giant component.

We will use the method of generating functions intro-
duced in �6�. The crucial observation is that the finite con-
nected components are essentially trees. That is because a
link emerging from one of the vertices in the component has
the probability �s /V of connecting back to a node from this
component, where s is the size of the component. So for
finite s this becomes negligible in the large-V limit.

Now let us pick a link from the graph at random. It
belongs to some connected component. We will call P1�s�
the probability that cutting this link will split the component
into two parts, one of them finite and having size s. Stated
differently, P1�s� is the probability that a randomly chosen
link will lead into a finite part of size s. By the argument
above this finite “half” will be a tree. Because of that, one
can write down the equation for the generating function
H1�x�=�sP1�s�xs �6�:

H1�x� = xG1„H1�x�… , �18�

where

G1�x� =
G0��x�
G0��1�

=
1

z
G0��x�, G0�x� = �

k=0

�

pkx
k. �19�

We denote by u the value of H1�1�:

u 
 H1�1� = �
s

P1�s� . �20�

When there is no giant component in the graph, all connected
components are finite and are trees. This means that cutting
each link will result in two finite parts; thus, u=1. However,
when the giant component appears, then there is a nonzero
probability that the chosen link will belong to this compo-
nent and either cutting it will split the component into two
infinite parts, or will not split it at all. As this probability is
missing from P1�s� the sum �20� will be smaller the one. u is
to be interpreted as the probability that a randomly chosen
link is connected to a finite part on at least one side of the
graph �10�. It follows that u2 is the probability that a random
link belongs to a finite component of arbitrary size.

That can be derived in a more explicit way. Let us denote
by P1,1�s� the probability that a randomly chosen link be-
longs to a component of size s. Then,

P1,1�s� = �
t=0

s

P1�t�P1�s − t� . �21�

It is a convolution of the probability distribution P1�s� with
itself, so its generating function is just H1

2�x�. Then
u2=H1

2�1�=�sP1,1�s� is the probability that a link belongs to
a finite connected component of arbitrary size and 1−u2 is
the probability that it is inside the giant component.

Finally, if we denote by P0�s� the probability that a ran-
domly chosen vertex belongs to a finite component of size s,
we can obtain its generating function H0�x� from H1�x� �6�:

H0�x� 
 �
s

P0�s�xs = xG0„H1�x�… . �22�

By the same arguments as above,

h 
 H0�1� = G0�u� �23�

is the probability that a randomly chosen vertex belongs to a
finite connected component and 1−h is the probability that it
belongs to the giant component.

It follows from �18� and �20� that u is the solution of the
equation

u = G1�u� . �24�

From the definition �19� it is easy to note that u=1 is always
a solution, but when condition �17� is fulfilled the above
equation has a solution smaller than 1 as well �6�. As argued,
this signals the appearance of a giant component.

A. Average degree

Using the results of the previous section it is easy to de-
rive formulas for the average degree in the giant component
z�g� and in the rest of the graph z�f�:

z�g� = � 2L�g�

V�g� 	 = z
1 − u2

1 − h
, �25a�

z�f� = � 2L�f�

V�f� 	 = z
u2

h
. �25b�
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As we have already pointed out, the giant connected com-
ponent is not a tree. The number of independent loops that it
contains equals

L�g� − V�g� + 1  V� z

2
�1 − u2� − 1 + h� , �26�

and as all the remaining connected components are trees, this
is also the number of loops in the whole graph.

We can also easily calculate the number of finite con-
nected components ncn knowing that they form a forest. The
number of links in the forest is L�f�=V�f�−ncn which gives

�ncn� = �h − u2 z

2
�V . �27�

From that we can derive the formula for the average size
of the finite connected component:

�s��f� = �V�f�

ncn
	 =

2h

2h − u2z
. �28�

B. Degree distribution

In this section we will calculate the degree distribution
pk

�f� in the nongiant component part of the graph. From the
relation

pk = �1 − h�pk
�g� + hpk

�f�, �29�

we automatically get the distribution pk
�g� in the giant com-

ponent. This has already been done in �8�, but we find it
instructive to use the same method of generating functions as
described in Sec. III. The idea is to apply it only to the graph
with the giant component excluded—i.e., to the finite con-
nected components. We will use a tilde to denote the gener-
ating functions of the sought probability:

G̃0�x� = �
k=0

�

pk
�f�xk, G̃1�x� =

G̃0��x�

G̃0��1�
. �30�

Using the argument from Ref. �6� we obtain the same equa-
tions

H̃1�x� = xG̃1„H̃1�x�… , �31a�

H̃0�x� = xG̃0„H̃1�x�… , �31b�

for the generating functions of the probabilities P̃1�s� and

P̃0�s�. Here P̃0�s� is the probability that a vertex belongs to a
finite component of size s provided that it belongs to a finite

component and P̃1�s� is the probability that a link leads into
a finite component of size s provided that it leads into a finite
component. From this we can write the relations

P0�s� = hP̃0�s�, P1�s� = uP̃1�s� , �32�

which leads to

H0�x� = hH̃0�x� , �33a�

H1�x� = uH̃1�x� . �33b�

To solve Eqs. �30�, �31a�, �31b�, �33a�, and �33b� for pk
�f� we

make an ansatz

pk
�f� =

pka
k

G�a�
. �34�

Then,

G̃0�x� =
G0�xa�
G0�a�

, G̃1�x� =
G1�xa�
G1�a�

, �35�

so that Eq. �31a� can be rewritten as

aH̃1�x� =
a

G1�a�
xG1„H̃1�x�a… . �36�

Comparing with �18� we see that it will be fulfilled if

aH̃1�x� = H1� a

G1�a�
x� . �37�

Inserting this into �33b� we get

aH1�x� = uH1� a

G1�a�
x� , �38�

because of Eq. �24�, which can be solved by putting a=u.
Now we must check Eq. �33a�. Using Eqs. �22�, �31b�,

and �33b� we get

hH̃0�x� = hxG̃0„H̃1�x�… = hx
G0„uH̃1�x�…

G0�u�

= xh
G0„H1�x�…

h
= H0�x� . �39�

So finally,

pk
�f� =

pku
k

h
. �40�

From that and relation �29� we get the formula for the degree
distribution in the giant component:

pk
�g� = pk

�1 − uk�
1 − h

. �41�

In the limit u→1 and h→1 this reduces to

pk
�g� =

k

z
pk. �42�

In this limit the connected giant cluster is a tree. Indeed, one
can check that

�
k

kpk
�g� = �

k

k2

z
pk = 2. �43�

To see this we must first note that Eq. �24� has always the
solution u=1. It becomes the only one when G1��1�=1, which
is equivalent to the condition �43�.
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C. Correlations

To calculate pq,r
�g� we use the relation

nq,r�G� = nq,r
�g��G� + nq,r

�f��G� . �44�

We have already assumed that vertex degrees are uncorre-
lated; we further assume that this is also true for the finite
connected components �nongiant� part of the graph. Assum-
ing self-averaging and using Eq. �10� for nq,r and nq,r

�f� we
obtain

pq,r
�g� =

qpqrpr

z2

1

1 − u2�1 −
uqur

u2 � �45�

and

k̄�g��k� =
�k2�

z

1

1 − uk�1 −
�k2��f�

z�f�
z

�k2�
uk� . �46�

In the derivation we have used the relation � A
B �= �A�

�B� , which
should be valid for self-averaging quantities in the large-V
limit. Comparing this with formulas �10� and �16� we note
that the correlations disappear in the limit u→0. In the tree
limit u→1 the formulas above take the form

lim
u,h→1

pq,r
�g� = �q + r − 2�

1

2

qpqrpr

z2 �47�

and

lim
u,h→1

k̄�g��k� =
1

zk
��k − 2��k2� + �k3�� . �48�

IV. EXAMPLES

While deriving our formulas we have made several as-
sumptions: �i� the vertex orders are uncorrelated, �ii� the
measured quantities are self-averaging, and of course �iii� all
the derivations are only valid in the large-V limit. To check
to what extent those assumptions are satisfied and, more im-
portantly, to check the magnitude of the finite size effects, we
have compared our predictions to the results of MC simula-
tions of moderate-sized graphs �5000 vertices�. To simulate
ER graphs we used a straightforward algorithm which con-
nects vertices at random. To generate maximally random
graphs with a given distribution we used the method de-
scribed in Refs. �9,15� and implemented in Ref. �16�. This
method consists of generating graphs with suitably chosen
one-point weights using a Metropolis-type algorithm.

A. Erdös-Rényi graphs

For ER graphs the distribution pk is Poissonian,
pk=e−z zk

k! and

G0�x� = G1�x� = ez�x−1�. �49�

It follows that H1�x�=H0�x�
H�x�, so h=u with h being the
closest to one �from below� positive solution of the equation

h = ez�h−1�. �50�

The results for z�f� and z�g� are shown in Fig. 1. They are
compared with the results of the MC simulations of ER

graphs. The agreement is perfect, and there are no visible
finite-size effects �error bars are smaller than the size of the
points�. The degree distribution can be now easily obtained
from �41�. The results are presented in Fig. 2. Again, the
agreement is very good without any noticeable finite-size
effects.

In this case it may be instructive to derive those results in
a simpler way: when we omit the giant component from our
considerations we are left with a graph with hN vertices and
h2L links on average. As there are no further restrictions, we
can assume that this graph is an Erdös-Rényi graph as well.
This means that its degree distribution is again Poissonian
with mean z�f�:

pk
�f� = e−zf

�z�f��k

k!
= e−hzzkhk

k!
. �51�

From the relation h=u we obtain formula �40�.
Finally, for k̄�k� we get
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FIG. 1. �Color online� Average degree z �dashed line�, average
degree zg of the connected component �upper solid line�, and aver-
age degree of the rest zf �lower solid line� as a function of z for ER
graphs. Circles mark the results of MC simulations.
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FIG. 2. �Color online� Degree distribution for ER graphs with
z=2. Circles mark the results of MC simulations for the giant com-
ponent and diamonds for the full graph. Solid lines denote analyti-
cal solutions.
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k̄�g��k� =
z + 1

1 − hk�1 −
zh + 1

z + 1
hk� . �52�

The results are presented in Fig. 3. One can see clearly the
appearance of correlations in the giant connected component
as advocated in the Introduction. The agreement with the
predicted values is again very good.

B. Exponential degree distribution

As the second example we take graphs with exponential
degree distribution

pk = �1 − e−1/��e−k/�. �53�

The average degree in this case is

z =
e−1/�

1 − e−1/�  � −
1

2
, � � 1, �54�

and �6�

G0�x� =
1 − e−1/�

1 − xe−1/� , G1�x� = G0
2�x� . �55�

This implies u=h2. The giant component appears for
��1 / ln 30.91. The results for z�g� and z�f� are presented in
Fig. 4. As in the previous example, there are no visible de-
viations from the theoretical predictions.

In Figs. 5 and 6 results for pk
�g� and k̄�g��k� are presented

for �=1.5. We observe the same kind of correlations in the
giant component as in the case of ER graphs.

C. Scale-free graphs

Probably the most interesting case are scale-free graphs
with distribution pk�k−�. While studying them we have to
consider two scenarios 2	�
3 and ��3. In the first case
we expect correlations between node degrees, as pointed out
in Refs. �9,17–19�. This invalidates both the derivation of
Eqs. �18� and �45�. Additionally the quantity �k2� diverges

and so k̄�k� is not defined. Because our aim was to investi-

gate the correlations appearing solely as an effect of the con-
nectedness of graphs, we have decided not to study the
�
3 case in this paper. This is, however, an interesting issue
and merits further investigation. One line of pursuit is to use
the algorithm proposed in �19� to generate uncorrelated
graphs with heavy tails. Then one should obtain predictions
at least for the joint probability pq,r which does not contain
any divergences. One could also use the V-dependent “cut-
off” distribution as proposed in �19� instead of the “full”
distribution pk�k−�. This would yield the V depending re-
sults, but may not be feasible analytically. In the case of
�	2 already the first moment of the distribution pk is not
defined and the generating function approach fails com-
pletely.

When ��3 the �k2� is finite and there are no correlations,
at least in the infinite-size limit �18,19�. However, for finite V
we expect strong finite-size effects for � close to 3. To see
this let us estimate the asymptotic behavior of �k2�:
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�k2�  �
k

k2pk − �
kc�V�

�

k2pk  �k2�� − cV−��−3/�−1�.

�56�

In the above we have assumed the natural cutoff
kc�V��V1/�−1 �9,17–19�. For � close to 3, this converges
very slowly. To observe those effects we have simulated our
system at �=13 /4, when �k2� approaches its asymptotic
value as V−1/9. The results of our simulations of graphs with
5000 vertices are presented in Figs. 7 and 8. As expected the
data for pk and pk

�g� distributions show strong cutoff effects
around k=40, but for smaller values of k the agreement with
theoretical predictions is rather good. Looking at the results

for k̄�k� we notice two things: �i� Data for the full graph
show a deviation from a straight line, indicating the presence
of some correlations due to heavy tails. �ii� Data for the giant
connected component show a very strong effect of correla-
tions. The agreement with theoretical values is very poor, so
we have not included them in the picture. This is due to the
described cutoff effect on �k2�. We can obtain a better agree-
ment if we use in Eq. �46� the actual value of �k2� measured
in simulations instead of its infinite-volume limit.

V. CONNECTED GRAPHS

Finally, we would like to calculate the properties of the
maximally random connected graphs. To this end we assume
that the ensemble of giant connected components of the
maximal entropy graphs with distribution pk is a maximal
entropy ensemble of connected graphs with distribution pk

�g�

�we neglect the fluctuations in the number of vertices and
links of the giant component�. This is a plausible assumption
as we do not put any additional constraints except connec-
tivity. In Appendix B we provide a more detailed argumen-
tation. With this assumption the properties of the maximal
entropy connected random graphs with distribution pk

�g�

and/or average degree z�g� are the same as that of the maxi-
mal entropy random graphs with distribution pk and/or aver-
age degree z given by Eqs. �41� and �25a�.

A. Connected ER graphs

By connected ER graphs we mean maximal entropy con-
nected graphs with a given average degree z�g�. According to
the arguments from the previous section this ensemble cor-
responds to the ensemble of giant components in ER graphs
with average degree z related by Eq. �25a�. For a given z�g�

we solve this equation for z �numerically� and use formulas

�41� and �52� for degree distribution and for k̄�k� respec-
tively. The results are presented in Figs. 9 and 10 and com-
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pared with the MC data for connected graphs taken from
�12�. The agreement is very good which confirms the validity
of the assumption made in the previous section.

B. Connected random graphs with arbitrary degree
distribution

To calculate the properties of connected random graphs
with arbitrary degree distribution we need to invert Eq. �41�.
This can be done by rewriting it as

pk = �1 − h�
pk

�g�

1 − uk , p0 � 0, �57�

where u satisfies Eq. �24�:

u =

�
k=1

�

pk
�g� kuk−1

1 − uk

�
k=1

�

pk
�g� k

1 − uk

. �58�

The above equation can be solved by the simple iteration
procedure. To prove that it has a solution we rewrite it as

�
k=1

�

pk
�g�ku

1 − uk−2

1 − uk 
 g�u� = 0. �59�

It is easy to check that

g�0� = − p1
�g�, lim

u→1
g�u� = �

k=1

�

pk
�g�k − 2. �60�

So for connected graphs g�1� is positive �z�g��2� and g�0�
negative �p1

�g��0�.
Once we know u we can calculate h and p0 from the

normalization of the distribution pk and Eq. �23�:

1 = p0 + �1 − h��
k=1

�
pk

�g�

1 − uk , h = p0 + �1 − h��
k=1

�
ukpk

�g�

1 − uk .

�61�

Because �k=1
� pgk

1−uk −�k=1
� ukpgk

1−uk =1, those two equations are not
independent and we can set p0=0. Then,

h = 1 − ��
k=1

�
pk

�g�

1 − uk�−1

. �62�

C. Simulating connected graphs

This procedure may be actually used to generate con-
nected random graphs in an efficient way. Instead of gener-
ating connected graphs with degree distribution pk

�g� and
checking the connectivity after every move, we can generate
graphs with distribution pk given by �57� and use the giant
connected component. This still requires calculating the con-
nected parts, but it need to be done only once before each
measurement.

As an example, we have generated connected maximally
random graphs with Poissonian degree distribution

pk
�g� = e−z zk

k!
, k � 0, p0 = 0, �63�

with z�g�2.7236. For this distribution u0.1209,
h0.0341, and z2.6696. Using the program �16� we have
simulated a maximally random graph with 5000 / �1−h�
5177 vertices and 6910 links with degree distribution �57�.
We generated 10 000 independent graphs. The average size
of the giant component was 5000.24�0.25 with standard
deviation 20. The degree distribution in the connected
component agrees very well with the desired one, as can be
seen in Fig. 11.

VI. UNCORRELATED CONNECTED GRAPHS

An interesting situation arises when p1=0; i.e., vertices
with degree 1 �leaves� are forbidden. Then u=0 and h= p0.
This means that the resulting graph consists of one giant
connected component and p0V isolated vertices only. It is
easy to understand—finite connected components are trees,
but there are no trees without leaves, except the degenerated
ones made of a single vertex. If we additionally set p0=0
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FIG. 9. �Color online� Degree distribution pk�k� in connected
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size of each graph is 5000 vertices.
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then we will obtain a graph containing only the giant
component—i.e., a connected graph.

But as observed in Sec. III C, u=0 implies the absence of
correlations. That would support our argument made in the
Introduction about the role of the one-degree vertices in the
appearance of correlations in a connected graph. Using the
results of the previous section we can state that vertex de-
grees in the maximal entropy random graphs are uncorre-
lated if and only if p1=0; i.e., there are no leaves in the
graph.

As a check, we have carried out simulations with the ex-
ponential degree distribution and no leaves:

pk =
1 − e−1/�

e−2/� e−k/�, k � 1, p0 = p1 = 0, �64�

for �=1.5 �z3.055�. The results for the giant component
which consisted on average of more the 99.9% of the whole
graph are presented in Figs. 5 and 6 �squares�. As predicted,
vertices are uncorrelated in the stark contrast to the p1�0
case plotted in the same figures.

We have also performed simulations for the scale-free dis-
tribution 1 /k13/4 and no leaves. The results are presented in
Figs. 7 and 8 �squares�. We see that correlations are very
much suppressed compared to the case when we admit
leaves �presented in the same figures�. The slight remaining
correlation is due to long tails as explained in Sec. IV C.

VII. SUMMARY

In this paper we have studied the correlations in con-
nected random graphs. We have extended the results of Refs.
�6,8,10� and calculated correlations in the giant connected
components of random graphs. We argue that those correla-
tions are related to the presence of nodes with degree 1,
suggesting that the only cause of correlations is the absence
of “hedgehogs.” This has been already stated in �11� where it
has been shown that in the grand-canonical ensemble of
arbitrary-sized trees, where “hedgehogs” appear, correlations
vanish. We find this to be a very interesting issue that merits
further studies.

The correlations observed in connected random graphs
are an example of the so-called “structural” or “kinematic”

correlations, as they appear in consequence of some global
constraint. This should be contrasted with “dynamic” corre-
lations which are the result of local two-point interactions
between vertices. Such correlations may be generated by
two-point weights �20�. This distinction can be important in
simplicial quantum gravity where degree-degree correlations
are interpreted as curvature-curvature correlations �see, for
example, �21��. However, as the simplicial manifolds are
connected by definition those correlations are due to the
above described mechanism rather than to some kind of
gravitational interaction �11,22�. We believe that our results
may help in clarifying such issues and in the interpretation of
data obtained from MC simulations.

Finally, we have shown how to relate the giant connected
components to the maximal entropy connected graphs en-
semble. This allowed us to propose an efficient method for
generating connected random graphs based on the Metropo-
lis algorithm.
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APPENDIX A: NON-SELF-AVERAGING ENSEMBLE

Denoting by G�V ;k� the ensemble of all simple regular
graphs with V vertices and degree k �in a regular graph all
vertices have the same degree�, we define

G�V� = �
k
G�V;k�, P�G� =

wk

#G�V;k�
, �A1�

where #G�V ;k� denotes the number of graphs in the en-
semble G�V ;k� and wk is an arbitrary probability distribution.
With this definition we find

pq = �
G�G

nq

V
P�G� = �

k
�

G�G�V;k�

wk�k,q

#G�V;k�
= �

k

wk�k,q = wq.

�A2�

It is easy to note that this poorly describes the distributions
of single graphs which are just �’s. The variance of pk is

�2pq = �
G�G

�nq

V
− wq�2

P�G� = �
k

�
G�G�V;k�

wk��k,q − wq�2

#G�V;k�

= �
k

wk��k,q − wq�2 = wq − 2wq
2 + wq

2�
k

wk �A3�

and indeed does not disappear in the large-V limit.
For correlations we obtain

� nq,r

2L
	 = qr� nq

2L

nr

2L
	 = �

k

wk�q,k�r,k = wq�q,r �A4�

and
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qr� nq

2L
	� nr

2L
	 = �

k

wk�k,q�
k�

wk��k�,r = wqwr. �A5�

So the condition �10� is not satisfied. It means that vertices
on each particular graph are uncorrelated, but correlated if
the whole ensemble is considered. This is easy to explain: if
we pick a link from a graph with a given k, then the infor-
mation about the first vertex does not provide any additional
information; however, if we do not know k, then the degree
of the first vertex will give us immediately the value of its
neighbor.

APPENDIX B: ENTROPY OF THE GIANT CONNECTED
COMPONENTS

Let G and P�G� define a maximal entropy ensemble with
V vertices, L links, and vertex degree distribution pk. We
assume that the probability P�G� factorizes:

P�G� = �
C�G

Pc�C� , �B1�

where C are the connected components of the graph G.
Let Gc denote the ensemble of all giant connected compo-

nents. We assume that we can neglect the fluctuations, so all
the graphs in this ensemble have V�g� vertices and L�g� links.

The degree distribution in this ensemble is pk
�g�. Because of

the property �B1�, the entropy �1� of the whole ensemble
�G , P� is the sum of the entropy of the giant connected com-
ponent ensemble and the rest:

S = S�g� + S�f�. �B2�

Now we assume that there exists a probability Pc� defined on
the ensemble Gc such that the entropy

− �
G�Gc

Pc��G�ln Pc��G� �B3�

is greater than S�g�, but the vertex degree probability distri-
bution remains unchanged. Then we can define a new prob-
ability on the ensemble G:

P��G� = Pc��C
�g�� �

C�C�g�
Pc�C� , �B4�

where C�g� is the giant connected component of graph G. The
degree distribution of the ensemble �G , P�� would be the
same as that of �G , P� ensemble, but according to �B2�, its
entropy would be greater. This contradicts the assumption
that �G , P� is the maximal entropy ensemble and proves that
the ensemble of giant connected components is a maximal
entropy ensemble.
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